
Proposal for C2x

WG14 N2775

Title: Literal suffixes for bit-precise integers

Author, affiliation: Aaron Ballman, Intel

 Melanie Blower, Intel

Date: 2021-07-13

Proposal category: New features

Target audience: C application programmers

Abstract: C23 will have bit-precise integer types. One of the salient properties of these types is that they

do not undergo default integer promotions for performance reasons. Having a literal suffix will further

reduce unnecessary conversions for expressions involving a bit-precise integer type and a literal.

Literal suffixes for bit-precise integers
Reply-to: Aaron Ballman (aaron@aaronballman.com)

Document No: N2775

Date: 2021-07-13

Summary of Changes
N2775

• Original proposal, split off from N2590

Introduction and Rationale
To support forming _BitInt literals, we propose adding two new integer literal suffixes, spelled wb and

uwb, which designate a constant of type _BitInt(N) or unsigned _BitInt(N), respectively, where N

is calculated based on the given literal. Thus, wb results in a _BitInt of the smallest width for a signed

representation of the literal, and uwb results in an unsigned _BitInt of the smallest width for an

unsigned representation of the literal.

Within the preprocessor, if the constant value is too large to fit within the range of values supported by

[u]intmax_t, the constant cannot appear within the controlling expression of a #if directive (6.10.1p7)

but it will still form a valid integer constant suitable for use within an expression or initialization (6.4.8p4,

6.4.4p3). This can lead to a subtle surprise with code like:

#define FOO 0xFFFF…FFFFuwb // … is replaced by a lot of hex digits

_BitInt(…) I = FOO; // OK (… is replaced by the # of expected bits)

#if FOO // invalid constant expression; value too large for uintmax_t

#endif

The primary motivation for having a bit-precise literal suffix is to give programmers a way to avoid the

performance penalty of implicit conversions in expressions involving literals without having to resort to

cast operations that may obfuscate the expression. Consider this example:

_BitInt(7) DoMath(_BitInt(7) Value1, _BitInt(7) Value2) {

 return Value1 + Value2 * 2;

}

The arithmetic binary expressions require picking a common arithmetic type on which to perform the

binary operation. Because int has greater width than _BitInt(7), Value2 will be implicitly converted

to an int when performing the multiplication. For the same reason, Value1 will also be converted to

int when performing the addition. Finally, the result of the expression will be converted back to

_BitInt(7) when returning from the function. While the programmer can use explicit casts to avoid the

conversions, that approach becomes unpalatable as you add subexpressions also involving literals because

the casts become distracting after a certain amount. Using an integer literal suffix is more expressive

while being syntactically more succinct.

When polled about whether the committee is in favor of supporting integer literals of _BitInt type using

the xi suffix at the Oct 2020 meeting, the results were 13/4/3 (consensus).

Suffix Design Choices
The literal suffix was part of the proposed bit-precise integer type feature in N2590 where it was specified

as xi and uxi. Despite potential lexing difficulties with differentiating a bit-precise integer suffix from a

hexadecimal literal, such as with 0xi, this suffix made sense when the feature was called _ExtInt.

However, the committee renamed the datatype to _BitInt and we no longer think that xi and uxi are a

good choice given the similarity with hexadecimal literals. While bi and ubi would be natural choices

for a suffix due to the similarity to the spelling of _BitInt, such a suffix is problematic due to conflicts

with existing suffixes. Consider a literal like 0x3bi, which is a valid imaginary literal whose value is

0x3b.

Due to these concerns, we are using the specific-width length modifier adopted in N2680 as the basis for

both a bit-precise length modifier (proposal forthcoming) and for the literal suffix. If it helps, you can

remember the suffix as specifying a “Wide-enough Bit-precise integer”.

Proposed Straw Polls
We would like to see literal suffixes for bit-precise integer types added into C23. To that end, we would

like to poll the following:

Does WG14 wish to adopt N2775 into C23?

In the event the previous poll does not gain consensus, we would like to poll:

Is WG14 in favor of supporting integer literals of _BitInt type using the wb suffix?

Proposed Wording
The wording proposed is a diff from WG14 N2596 with WG14 N2763 applied. Green text is new text,

while red text is deleted text.

Modify 6.4.4.1p1:

integer-suffix:

 unsigned-suffix long-suffixopt

 unsigned-suffix long-long-suffix

 long-suffix unsigned-suffixopt

 long-long-suffix unsigned-suffixopt

 unsigned-suffixopt bit-precise-int-suffix

 bit-precise-int-suffix unsigned-suffixopt

bit-precise-int-suffix: one of wb WB

Modify 6.4.4.1p5 to add 2 rows to the bottom of the table: Drafting note: mixing uppercase and

lowercase letters for the suffix, like Wb, is not allowed; this is consistent with the long long suffix.

wb or WB _BitInt(N) Where the width N

is the smallest N greater than

1 which can accommodate the

value and the sign bit.

 _BitInt(N) Where the width N

is the smallest N greater than

1 which can accommodate the

value and the sign bit.

Both u or U

and wb or WB

unsigned _BitInt(N) Where

the width N is the smallest N

unsigned _BitInt(N) Where

the width N is the smallest N

greater than 0 which can

accommodate the value.

greater than 0 which can

accommodate the value.

Add a new paragraph below 6.4.4.1p6:

EXAMPLE 1 The wb suffix results in an _BitInt that includes space for the sign bit even if the

value of the constant is positive or was specified in hexadecimal or octal notation.

-3wb /* Yields an _BitInt(3) that is then negated; two value

 bits, one sign bit */

-0x3wb /* Yields an _BitInt(3) that is then negated; two value

 bits, one sign bit */

3wb /* Yields an _BitInt(3); two value bits, one sign bit */

3uwb /* Yields an unsigned _BitInt(2) */

-3uwb /* Yields an unsigned _BitInt(2) that is then negated,

 resulting in wrap-around */

Acknowledgements
I would like to recognize the following people for their help with this work: Erich Keane.

References
[N2590]

Adding a fundamental type for N-bit integers. Ballman, et al. http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n2590.pdf

[N2680]

Specific width length modifier. Seacord. http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2680.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2590.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2590.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2680.pdf

